
Database Magazine – Nummer 1 – februari 2005 53

PASCAL

I have long been deploring what I call the “cookbook”

approach to becoming a database practitioner. There is hardly

education to be had any more, including academia. It’s been

almost entirely replaced by product training, devoid of any

history, and fundamental concepts and principles of the field.

Those who undergo such training are not even aware that

there are such things as concepts and principles beyond the

product features they learn. They operate with blinders,

because they essentially can only duplicate memorized

recipes, and do not fully understand why various product

features exist, what they mean, and whether they are correct

or sufficient; when problems arise, they cannot associate them

with the real causes, and cannot address them correctly

without piling up additional problems.

Worse, some of these cookbook practitioners, who know

even less than their trainers, end up training others, causing

an accelerated dumbing down trend. The consequences are

obvious.

Consider, for example, A Short Oracle Tutorial For Beginners,

by a UK outfit called Smart-Soft:

This is just a quick introduction to Oracle for beginners, to give

a short history of databases and Oracle Corporation’s role in

them, explain relational theory and provide a few examples so

you can see how relational databases work. There is also a very

brief discussion of object-oriented design as it applies to

databases.

“Explain relational theory” and “object-oriented design as it

applies to databases”? The latter applies to programming, not

databases, and we’ll shortly see about the former.

In the late 1960s/early 1970s, specialised data management

software appeared – the first database management systems

(DBMS). These early DBMSs were either hierarchical (tree) or

network (CODASYL) databases – not relational or object-

oriented – and were very complex and inflexible which made

life difficult when it came to adding new applications or

reorganising the data. The solution to this was relational

databases which are based on the concept of normalisation

– the separation of the logical and physical representation of

data.

Relational databases are not “based on the concept of

normalization”. They are based on predicate logic and set

theory. Normalization is a set of logical design principles for

relational databases to avoid several problems: redundancy,

update anomalies, complexity of queries and of interpretation

of results.

The logical/physical separation is not normalization, but

physical data independence. The article goes very briefly

through some history of IBM’s System R research and that of

the Oracle Corporation and concludes:

As relational databases became accepted, companies wanted to

expand their use to store images, spreadsheets, etc. which can’t

be described in 2-dimensional terms. This led to the Oracle

database becoming an object-relational hybrid in version 8.0,

i.e. a relational database with object extensions, enabling you

to have the best of both worlds.

It’s not relational databases that were accepted, but SQL

DBMSs. As we have amply documented in our writings and

seminars, SQL was the IBM research prototype language,

which was thrown in the public domain without much thought.

Because its authors did not have a proper grasp of the

relational model (which is true to this day, see If You Liked

SQL, You’ll Love Xquery), it is very far from what a truly

relational data language could and should have looked like.

So even though almost everybody deems SQL DBMSs

relational, they are really nothing of the sort. A sad

consequence of the “cookbook approach” practiced in the

industry.

We will probably forever have to reiterate again and again for

the rest of our lives:

Relations are not two-dimensional; N-attribute relations are

N-dimensional. Tables on paper or screen are pictures of relations,

whose medium is two-dimensional, but they still have N columns and,

therefore, represent N dimensions.

What is more, attributes can be of any type – text, images,

audio, video, spreadsheets – you name it (see Chapter 1 in

Practical issues in Database Management), so what Oracle

should have done is implement the relational model with true

user-defined data types, not SQL with object-extensions.

A relational database can be regarded as a set of

2-dimensional tables (known as “relations” in relational

database theory). Each table has rows (known as a “tuples”)

and columns (“domains”) and the relationships between the

tables is defined by one table having a column with the same

meaning (but not necessarily value) as a column in another

table.

Tables are not “known as relations” in theory. Relations are

represented by a special kind of table in databases. The

The blind leading the blind

Column

Database Magazine – Nummer 1 – februari 200554

columns represent attributes whose values are drawn from

data types. Only one kind of relationship in a relational

database is represented by tables sharing columns defined

over the same data type, and thus representing meaningfully

comparable attributes. If the column in one table is a primary

key, then the column in the other table is a foreign key.

Relational databases obtain their flexibility from being based

on set theory (also known as relational calculus) which enables

sets or relations to be combined in various ways:

- via a join (also known as “intersect”, or “and”);

- union (“or”, “add”);

- exclusive “OR” (subtracted);

- and outer-join which is a combination of intersecting and

exclusive or’ing.

Relational calculus is not just another name for set theory.

And relational operations are not just for combining relations.

Here’s the “brief explanation” of object databases:

An object-oriented database, as the name suggests, stores and

manages objects. In this context an object has both attributes

and methods (a program stored within the object that performs

a certain action or task) and in a true object-oriented database

would belong to a class and would allow multilevel inheritance.

The later versions of Oracle (Oracle 8, Oracle 8i and Oracle 9i)

are object-relational hybrids because they support both

relational and object-oriented features. The relational features

are still the more prominent at the moment, but this will

probably change as the industry begins to learn how to use the

new technologies.

Got that? In fact, if correctly taken to its logical conclusion, an

object DBMS is nothing but a true RDBMS that supports type

inheritance, but correctly, not as it’s implemented in current

object DBMSs (see The Third Manifesto).

If you ever wondered why database practice is in decay, the

proliferation of material such as the hereby debunked article is

one reason why. This is the kind of introduction to database

fundamentals – and the only one, if any – that practitioners get

today, offered by people who have no clue. God save us all,

and I’m an atheist!

For a proper introduction to fundamentals see the Practical

Database Foundations series of papers, and the seminars for

which they serve as text.

Fabian Pascal is onafhankelijk IT-analist, consultant en auteur

gespecialiseerd in data management.

An object DBMS is nothing
but a true RDBMS that supports
type inheritance

