
45

Column

In an article titled Using Oracle Nested Tables, Donald 

Burleson writes: “Using the Oracle nested table structure, 

subordinate data items can be directly linked to the base table 

by using Oracle’s newest construct, the object ID (called an 

‘OID’). One of the remarkable extensions of the Oracle data-

base is the ability to reference Oracle objects directly by using 

pointers as opposed to relational table joins. Proponents of the 

object-oriented database approach often criticize standard rela-

tional databases because of the requirement to reassemble an 

object every time it is referenced.”

There are two claims here: that (a) object IDs (essentially, 

pointers) and (b) nested tables, are “remarkable” Oracle exten-

sions; there is also that annoying nonsense about “reassem-

bling objects”. We have dispelled this stuff many, many times, 

see for example, Don’t Mix Pointers with Relations in C.J. 

Date’s RELATIONAL DATABASE WRITINGS 1994-1997, and 

PRACTICAL DATABASE FOUNDATIONS papers #1, What 

First Normal Form Really Means, and #2, What First Normal 

Form Means Not. But those who know and care only about 

products, are ignorant of fundamentals, yet feel competent to 

write or teach, keep repeating them. 

So let us restate our arguments in brief. In this article we 

discuss the drawbacks of pointers (unless otherwise stated, 

in what follows quotes are from the Date article, to which the 

reader is referred for more in-depth treatment). We will tackle 

nested tables in a future column.

Here’s Date: “The idea that databases should be allowed to 

include pointers to data as well as data per se has been around 

for a long time. Certainly it was a sine qua non of the old pre-

relational (IMS and CODASYL) world, and – in the shape of 

‘object IDs’ – it permeates the object world as well. And despite 

the fact that Codd very deliberately excluded pointers from the 

relational model when he first defined it, the same idea rears 

its head from time to time in the [SQL] world ... [e.g.] current 

‘SQL3’ attempts to extend the SQL standard to include support 

for objects ... Note: Given that there are no pointers in the rela-

tional model, it follows immediately that ‘relational’ databases 

that include pointers are – by definition – not relational!”

Aside from the ignorance of fundamentals and the history of 

the database field, he assigns the origins of the renewed inte-

rest in pointers to one of the confusions in the object world: 

“So what exactly is an object? Is it a value or a variable? Or 

both? Or something else entirely? Note: In fact, it’s precisely 

this object world confusion over values vs. variables that seems 

to be one of the principal sources of the ‘mixing pointers and 

relations’ idea...”

He then proceeds to explain why mixing pointers with relati-

ons is a very bad idea.

Complexity and error-proneness

Pointers lead to pointer chasing, and pointer chasing is notori-

ously error-prone.

Pointers require support of address types, values, and literals, 

and referencing and dereferencing operators for them, which 

are confusing in terminology and use. 

(Note: In the case of SQL, pointer support exacerbates another 

problem, language redundancy: many different ways of doing 

the same thing, which makes optimization difficult – see SQL 

Redundancy and DBMS Performance).

Pointers require support of row variables, another violation 

of the relational model: Because values don’t have addres-

ses, only variables do, values in table columns of address type 

must be addresses of row variables, not of row values. But: 

“The relational model deals with relational values, which are 

(loosely speaking) sets of row values, which are in turn (again, 

loosely speaking) sets of scalar values. It also deals with rela-

tion variables, which are variables whose values are relations 

... However, it does not deal with row variables (which are 

variables whose values are rows) ... the introduction of row 

variables dictate that we’d have to define a whole new query 

language for rows ... (a ‘row algebra’?), analogous to the ... 

[relational algebra]. We’d also have to define row-level update 

operators, analogous to the existing relational ones. We’d have 

to be able to define row-level integrity and security constraints, 

and row-level views. The catalog would have to describe row-

variables as well as relation variables ... We’d need a row-level 

design theory ... We’d also need guidelines as to when to use 

row variables and when relation variables.”

Consequently:

Adding a new kind of variable adds complexity, but not power;

User interfaces will be more complex;

Applications will be more difficult to implement and maintain, 

and more vulnerable to changes in database structure.

Pointers pertain to base, but not derived relations:

When people talk of “pointers to rows in relations,” it is quite 

clear that what they mean is pointers in base relations speci-

fically ... In other words, they forget about derived relations! 

... this is a mistake of the highest order, because the question 

as to which relations are base, and which derived is, in a very 

important sense, arbitrary.

PASCAL
Pointing Backwards  

Database Magazine – Nummer 2 – april 2005



Database Magazine – Nummer 2 – april 200546

Violation of Codd’s core relational requirement, the 

Information Principle:

... [a] result of [an] address invocation ... [is a scalar value] 

that cannot be derived from the scalar values in the database. 

And so there’s apparently some “information in the database” 

that’s not “cast explicitly in terms of values in relations,” and 

the principle is thereby violated.

Redundancy:

Adding pointers to the relational model is ... unnecessary! The 

relational model has managed perfectly well without them 

for over a quarter of a century; thus, any “relational” pointer 

mechanism – if it could be made to work in such a way as to 

overcome all of the objections already articulated ... – would 

still be 100 percent redundant. 

The “reassembling objects” argument is flawed for at least two 

reasons. First, object orientation, which is fuzzy and does not 

have a scientific foundation, lacks well-defined, precise design 

guidelines; what is an object, and which objects to define are 

in the eye of the beholder. Second, because the approach ori-

ginates in programming, its proponents tend to have a biased 

perspective, usually toward a specific application, ignoring the 

needs of other applications, including future ones. The norma-

lization principles in the relational approach avoid both these 

flaws.

Burleson is oblivious to all this. Like so many cookbook practi-

tioners, he offers a simplistic example:

“... a nested table is used to represent a repeating group for 

previous addresses. Whereas a person is likely to have a small 

number of previous employers, most people have a larger 

number of previous addresses, and the nested tables allows 

repeating groups to be linked to the employee with pointers.” 

And a snippet of data definition code and, voilá:

“That’s all there is to it ... The locator enables Oracle to use 

the pointer structures to dereference pointers to the location of 

the nested rows. A pointer dereference happens when you take 

a pointer to an object and ask the program to display the data 

the pointer is pointing to.”

Remarkable, isn’t it? Isn’t ignorance bliss? For how 

‘remarkable’ Oracle’s nested tables are, stay tuned.

Fabian Pascal is onafhankelijk IT-analist, consultant en auteur 

gespecialiseerd in data management. 

Zie ook zijn website www.dbdebunk.com


