
Database Magazine – Nummer 3 – mei 2005 45

In the summary of his column on DB2 NULLs in IDUG

Solutions Journal Craig Mullins writes:

“Nulls are clearly one of the most misunderstood features of

DB2 – of most of SQL database systems for that matter.

Although nulls can be confusing, you cannot bury your head

in the sand and ignore nulls if you choose to use DB2 as your

DBMS. Understanding what nulls are, and how best to use

them, can help you create usable DB2 databases and design

useful and correct queries in your DB2 applications.”

We agree that you ignore the presence of SQL NULLs at your

own peril, but, as we have demonstrated over the years in our

writings, there is no “best way” to use them, and they actually

create less usable databases, and misleading queries and

answers, if not outright wrong. In fact, even though Mullins

warns about the dangers of NULLs, his attempt at clarifying

them often gets it wrong, because they are inherently

unintuitive, and difficult to even talk about correctly. We will

not reiterate here all the problems with nulls and NULLs

here (we refer the reader to references listed at the end of this

article), but rather point out how hard it is to even talk

correctly about them.

It is a good idea not to confuse (a) a ‘null’ in many-valued

logics (MVL)-the various theoretical attempts to expand

two-valued logic (true/false) to more than two truth values

(e.g. true/false/unknown, true/false/unknown/inapplicable)

– with (b) a ‘NULL’, the SQL feature based on a poorly

defined, problematic version of three-valued logic, in order to

distinguish between problems inherent in the former, and

problems in the SQL standard specification, and in

commercial implementations. Mullins uses the former term

even though he refers only to the latter, the DB2 implemen-

tation. We shall use the caps.

He begins as follows: “A NULL represents missing or

unknown in formation at the column level. If a column ‘value’

can be NULL, it can mean one of two things: the attribute is

not applicable for certain occurrences of the entity, or the

attribute applies to all entity occurrences, but the information

may not always be known. Of course, it could be a

combination of these two.”

Two fundamental problems are right here. First, ‘missing or

unknown’ and ‘inapplicable’ are logically distinct and,

therefore, must be treated differently in data manipulation, to

obtain “correct” answers. Thus, just ‘unknown’, or just

‘inapplicable’ require different three-valued logics (3VL),

while both require an yet different four-valued-logic (4VL); by

“correct” we mean ‘in the pertinent many-valued logic

system’, not necessarily in the real-world, where two-valued

logic reigns. And the problem with SQL and its commercial

implementations is that it supports a poorly defined 3VL for

what is incorrectly perceived as a 4VL situation. As Mullins

admits: “DB2 does not differentiate between NULLs that

signify unknown data and those that signify inapplicable data.

This distinction must be made by the program logic of each

application.”

To those who believe that this can be addressed reliably

and cost-effectively in applications we say good luck. For all

practical purposes, using NULLs for both unknown and

“inapplicable values” in SQL will often produce wrong

answers. We will get to the erroneous perception and the

quotes around inapplicable shortly.

The second fundamental problem is that NULLs violate Codd’s

most basic Information Principle for relational databases

(emphasis added):

All information in a truly relational database must be represented

explicitly, in only one way: as values in relations.

That’s because the relational model is based on predicate

logic, which is 2VL. Thus, with a truly relational database and

DBMS, queries yield answers that are guaranteed to be

logically correct in the real world. It follows that tables that

contain anything other than values are not relations and,

therefore, databases containing them are not relational.

All bets are off: even if such databases yield answers that are

correct within some many-valued logic system – and SQL does

not guarantee even that – they are not guaranteed to be

correct in the real world.

Mullins does warn: “NULLs sometimes are in appropriately

referred to as ‘NULL values’. Using the term value to describe

a NULL is inaccurate because a NULL implies the lack of a

value.” But he fails to appreciate the implications, and advises

PASCAL
Speaking of NULLs:
Hard to Do It Right

Column

Database Magazine – Nummer 3 – mei 200546

“simply use the term NULL or NULLs” (without attaching the

term ‘value’ or ‘values to it’, as if that was enough to solve the

problem.)

Note: In fact, he also fails to heed his own advice. If, as he

says in the first quote above: “if a column value can be NULL”,

then a NULL and a value are interchangeable which, logically,

they are not.

Mullins does warn: “Keep in mind, though, that using NULL

to indicate ‘not applicable’ can be an indication of improper

database design. By properly modeling and normalizing your

database structures you can usually eliminate the need to use

NULLs to indicate that a column is inapplicable for a specific

row.”

But “inapplicable value” is a contradiction in terms, an artifact

of poor design by definition, hence the our quotes.

Consequently, it can and must always be avoided.

Furthermore, while we recommend fully normalized – that is,

correctly designed – databases, normalization has nothing to

do with “inapplicable values”, and it does not eliminate them

(see The Costly Illusion: Normalization, Integrity, and

Performance, www.dbdebunk.com/page/page/1103793.htm).

Mullins asks and tries to justify NULLs as follows:”When are

NULLs useful? Well, defining a column as NULL provides a

placeholder for data you might not yet know. For example,

when a new employee is hired and is inserted into an EMP

table, what should the employee termination date column be

set to? I don’t know about you, but I wouldn’t want any valid

date to be set in that column for my employee record. Instead,

NULL can be used to specify that the termination date is

currently unknown.”

But tuples in a relational database represent propositions

assumed by convention to be true in the real world. That, and

proper logical inferencing by the DBMS, guarantee results

that are true in the real world. And whether you like it or not,

what you don’t know, you cannot assert to be true. NULL is

essentially an attempt to circumvent this fact, by “asserting

your ignorance”, so to speak.

Recording in the database both propositions known to be true,

and propositions whose truth is undecidable, defeats the

ability of any DBMS to guarantee that answers to queries are

logically correct in the real world, with quite insidious

consequences, because SQL DBMSs will produce such

answers, but you may not be aware of it, and even if you are,

it is not easy to figure out what is wrong.

And because many-valued logics are unintuitive, and horribly

complex, implementations are certain to be highly error-prone,

piling problems of their own on top, which is exactly what

happened to SQL.

Despite numerous attempts over the years to devise solutions

to the thorny missing information problem, none was found

within the 2VL/relational framework. But a correct solution

must reside within that framework, which means that it

permits only assertions known to be true. We have recently

outlined such a solution in The Final NULL in the Coffin

(http://www.dbdebunk.com/page/page/1396241.htm). So there

is no longer an excuse for arguing that there is nothing but

NULL to deal with unknown data.

For more detailed discussions of the problems with many-

valued logics, SQL NULLs, and our relational solution to the

missing information problem we refer the reader to articles on

the subject at DATABASE DEBUNKINGS

(www.dbdebunk.com), or the references available via the site’s

Books page (www.dbdebunk.com/books.htm), which have

copious reference lists, particularly:

- F. Pascal, PRACTICAL ISSUES IN DATABASE

MANAGEMENT (Addison Wesley, 2003);

- C.J. Date, AN INTRODUCTION TO DATABASE SYSTEMS,

8th Ed. (Addison Wesley, 2004);

- C.J. Date with H. Darwen, A GUIDE TO THE SQL

STANDARD, 4th Ed. (Addison Wesley, 1996);

- McGoveran, D., Nothing from Nothing, Parts 1-4 in

C. J. Date, RELATIONAL DATABASE WRITINGS 1994-

1997 (Addison Wesley, 1998);

- F. Pascal, NULLs Nullified

(www.dbazine.com/pascal27.shtml).

Fabian Pascal

Fabian Pascal is onafhankelijk IT-analist, consultant en auteur

gespecialiseerd in data management.

Zie ook zijn website www.dbdebunk.com

Column

Online archief
Database Magazine
Database Magazine-lezer opgelet! Artikelen over onderwerpen als

Datawarehousing, SQL, ETL, Business Intelligence, Relationele data-

bases, modellering en nog veel meer vindt u in het Online Archief van

Array Publications. Vaktijdschriften als Storage Magazine, Database

Magazine, IT Service Magazine, Java Magazine en ons Oracle vakblad

Optimize hebben hun artikelenarchief online gezet. Met een Google-

achtige zoekstructuur vindt u snel wat u zoekt op www.dbm.nl

