
Database Magazine – Nummer 5 – september 2005 53

Column

The tax authority demands that you (businesses) deliver several forms 

to them each year. You deliver them as electronic forms. Each form is 

defined as an object ... (sic, as you say). So, for each form, your name 

(and any other repeating information) is repeated physically (“encapsu-

lated” in the “persistent” “object” ...). Denormalization at n’th degree 

(n = number of forms you deliver). The very fun part is that about the 

only information that the IRS wants, is your gross income: it is used to 

calculate your tax. Since that information can appear in two (or more) 

forms, which one contains the correct income?

(Personal communication)

A thread was initiated in a sqlteam.com forum with the 

following question:

Shailesh: To what extent one should normalize a given data model 

keeping in view performance for OLTP database? I have observed that 

most of ERP system databases are far denormalized, they maintain the 

data integrity procedurally and not through relationship constraints. 

I guess the design/normalization of OLTP systems is such as to facilitate 

fast input of data into the database. And for such purpose denormalized 

versions would be just right (as implemented by ERP systems like 

JDEdwards).

One response was:

Brett: Well ... yeah ... they do that as in to be “flexible”, or to be all 

things to all people ... PeopleSoft for example has no RI ... and then 

these Smarstream ... ugh EXTREMELY PAINFUL. Now, that’s not to 

say denormalization doesn’t have it’s place ...

Now, without database integrity (of all four kinds, not just 

referential, see Conceptual Modelling and Database Design: 

A Foundation Framework for Data Management 

(http://www.dbdebunk.com/page/page/764907.htm, forth-

coming at http://www.dbdebunk.com) things are, indeed, quite 

painful – that is, if you’re aware of integrity at all, which is 

increasingly rare. But ‘flexibility’ is a rather poor choice of 

words, because one of the purposes of normalization is more 

flexible databases, both for concurrent users with different 

data view needs, as well as for changing such needs over 

time. Besides, it begs the question:

Jay White: Curious ... what is it’s place?

Which got the following response:

X002548: I denormalize for OLAP, not OLTP... I had a bunch of web 

developers that wanted to dynamic against a 2 dimensional hierarchic 

table (Org x Level of service) ... I protested ... management sided with 

the “flash” of RAD ... And when the pages got served slower than a 

french restaurant, they decided that it might be in their interest to build 

an overnight batch process to speed up the process ... Now where did 

I hear that before ... Of course it was all their idea in the end ...

The table in question is not one that represents a set of 

entities in the database, but rather an analytical one, a specific 

data view, more akin to a query result, or report. It is the job of 

an analytical application to operate on properly designed 

relational tables to produce such a result. To the extent that 

performance is poor, the reason is not normalization, but the 

physical implementation details of the DBMS and database, 

and the quality of the application (efficient implementation of 

truly relational DBMSs should do just fine, see More on Final 

NULL in the Coffin (http://www.dbdebunk.com/page/

page/1649301.htm); and as it turned out, a denormalized 

solution did not exactly yield exciting performance either, see 

below for more on OLAP).

Page47: Well, for fun I went out and did some searching for denormali-

zation for performance ... And then I read some stuff by Fabian Pascal 

on the concept. While certainly interesting, Fabian’s arguments really 

have little application to SQL based programmers and designers. He 

states this pretty clearly in his articles, mentioning several times that 

SQL DBMS are not truly relational, and do not separate the logical 

table structure from the physical table structure well enough. I do 

realize that all of his arguments are not invalid, and that his advice is 

valuable and knowledgeable, but it is also true that denormalizing the 

physical table structure of a SQL database does lead to application 

specific improvements. Given that I haven’t heard of too many file-

based applications out there that match the performance and flexibility 

of a SQL DBMS, I don’t see why, in some cases, it isn’t permissible to 

use a SQL DBMS in a somewhat denormalized form to accomplish 

what you are hoping to do. Should it be used willy-nilly by people who 

don’t really understand it well? Certainly not. Should you make every 

effort to increase performance in other ways first? Absolutely. But 

when it comes down to it, sometimes it’s necessary.

Now, it is indeed, correct, that direct-image SQL DBMS 

implementations provide weak support of data independence, 

and their sets of physical structures and access methods are 

not as rich as they could and should have been; and that, as a 

result, performance is sometimes-thought by no means, 

always – poor when databases are normalized. But even that 

does not mean that denormalization is the solution. As I 

demonstrated in The Costly Illusion: Normalization, Integrity, 

and Performance (http://www.dbdebunk.com/page/

page/1103793.htm), gains in performance, if any, are not due 

to denormalization, but to failure to implement the additional 

integrity constraints to prevent possible inconsistencies due to 

the introduction of redundancy in the database:

PASCAL
Assembling Cars, 
disassembled Minds



Database Magazine – Nummer 5 – september 200554

Column

Jay White: Just be sure that when you are capturing performance 

metrics against a denormalized schema, you take into consideration the 

added costs of maintaining data integrity. With that in mind, if the 

denormalized schema still comes out on top ... so be it. In my 

experience, most of the time, by the time I add in all the DML to 

maintain data integrity for a denormalized schema, I find that I was 

better off normalizing. YMMV.

The fact is that most practitioners are unaware of the need for 

such constraints altogether, and essentially trade off integrity 

for performance; besides, SQL DBMSs do not support the full 

set of integrity constraints necessary for relational databases, 

so even if they wanted to deploy those constraints, they 

couldn’t. And because figuring out and declaring such 

constraints is prone to error and prohibitive, it makes no sense 

to bother with them just to get the same performance as with 

normalized databases, which makes them unnecessary. 

If performance is poor, blame the real culprit-implementation 

– and stop accepting inferior products and integrity risks. 

But what about “read-only”, or rarely updated databases?

crazyjoe: But if absolute data integrity isn’t necessary on the denormali-

zed fields, you can manage without all of the extra constraints. Beyond 

that, a lot of DW [data warehouse] applications have a certain cyclical 

process (“month end”) where the DW is unavailable for a couple of 

days while all of the ETL is done and then it’s brought back up for users 

again. It’s a large loss of elapsed time, but generally acceptable in the 

DW arena to maintain decent report performance throughout the rest 

of the month.

The notion that OLAP/DW data do not require integrity is 

somewhat of an illusion. DWs must be populated quite often 

and, given that most OLTP databases that are denormalized 

do not deploy the necessary constraints, chances are that their 

integrity is questionable. In absence of integrity enforcement 

at the DW level, the risk of inconsistent data is considerable 

(note that the same is true of even historical data, which is 

also read-only).

The point is that correct implementations of truly relational 

DBMSs (TRDBMS) would make obviate the need to accept 

such time losses and integrity risks. But as long as practitio-

ners, pundits, and the trade press erroneously believe that 

denormalization, rather than physical implementations, is the 

problem, and accept this state of affairs, there is no reason for 

better products to materialize.

Perhaps the finest example in the thread of the state of 

knowledge in the industry is the following:

bm1000: There used to be a saying about storing data in a normalized 

database: It makes as much sense as getting up in the morning, assem-

bling your car, and driving to work. Then, at the end of the day, driving 

home and disassembling your car into its component pieces. The moral 

of the story was to store data the way you use it. In my opinion, 

normalization is a process that you go through when developing a 

logical data model. Once the logical data model is stable, you then 

develop the physical database design. The physical database design is 

based on the logical data model, the processes that you are going to 

automate, and the service level objective that the client has agreed to. 

If you can achieve the performance requirements of the service level 

objective without denormalizing, terrific. But if you are having problems 

meeting your SLO, denormalization may well be the answer. 

This “disassembling car” fallacy is an old one, regurgitated 

over and over, despite the fact that it has been debunked 

more than once e.g. On “Respected Technical Analysts” 

(http://www.dbdebunk.com/page/page/622709.htm). 

One reaction got it almost right:

derrickleggett: I feel a warm, fuzzy feeling inside after reading this big 

line of crap. I’ll have job security for many more years, going behind 

people fixing all the screwups because they were more concerned 

about the here and now, and totally missed the boat on the big picture. 

Ahhhhhh, the life of a DBA!!!! How many of you guys are DBAs? 

Normalization is building a car with standardized parts, instead of just 

“piecing it together” from whatever is available. You then don’t have to 

spend years searching for a compatible part when something breaks 

instead of tearing the whole car apart and starting from scratch.

But not quite. A more suitable metaphor would be to some sort 

of vehicle used by multiple users for multiple purposes, say, 

carrying heavy loads, racing, and city driving, at different 

times; purposes which would also themselves change over 

time. So to which of the “how you use it” specifications would 

the vehicle be built? If such an animal were to be, it would 

have to be modular, and assembled and disassembled for each 

different use. If it does not exist, it is precisely because what is 

necessary and possible for computer applications, is not so for 

cars. 

Moreover, “physical model” meant storage and access 

methods, we would agree with the separation and insulation 

of the logical of the logical from the physical design. We have 

reasons to suspect, though, like so often is the case, the two 

levels are confused: SQL base tables are physically stored as 

such and the direct-image implementation facilitates such 

confusion and, therefore, the notion that denormalization is 

the solution.

We cannot but concur with some reactions in the thread, but 

those are becoming increasingly scarce:

Michael Valentine Jones: Usually the people talking about de-normaliza-

tion like this don’t really understand normalization, so it is just BS for “I 

don’t really know how to normalize a database, so I just threw some 

crap together, and said I did it for performance reasons”. What I think 

is funny is that the no-nothings are the ones building the applications, 

and then the senior people are the ones brought in to fix the mess. 

Kind of like having the construction laborers build a skyscraper, and 

then bringing in the Architects and Engineers to figure out how to keep 

it from falling down.

AndyB13: Or putting the LUNATICS in charge of the ASYLUM!!

Fabian Pascal 

Fabian Pascal is onafhankelijk IT-analist, consultant en auteur gespeciali-

seerd in data management. Zie ook zijn website www.dbdebunk.com


