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one that is getting the most attention is that they use a column-

based approach. (Note: there are a number of terms used to 

denote this concept: column-wise, column-oriented, columnvecto-

red, column store, columnar). In addition to being columnar, these 

vendors also emphasize deep compression, shared-nothing 

massively parallel processing, and, to some extent, a penchant for 

processing in-memory whenever possible. This article will 

describe these basic architectural principles, and why they matter, 

in a vendor-neutral way. Individual vendors will naturally boast

innovations and specializations, but those nuances will be left to 

the reader to explore on a vendor-by-vendor basis. 

What is Columnar?
I/O tends to be the largest resource bottleneck in processing 

analytic workloads on today’s platforms. Therefore, I/O 

optimizations can pay off in big ways. In a row-wise DBMS, I/O 

is saved by using auxiliary structures like secondary indices, join 

indices and summary tables. The problem is that these structures 

need to be designed and managed, they take up space, and 

they impact load performance. Plus, it’s not feasible to index 

everything, so valuable ad hoc discovery-type queries will likely 

be discouraged in such an environment. 

By contrast, a columnar DBMS saves I/O by optimizing the data 

organization within the storage layer to be more favorable for 

analytic queries. There is a one dimensional nature to how disk 

heads write to sectors. Whereas a row-wise DBMS writes its 

records by row in field order, a columnar DBMS writes its 

records by field in row order. This technique is a foundational 

element in enabling good performance because the nature of 

business analytics is to discern facts not from a single record, but 

across sets of data – sometimes very large sets. Specifically, the 

data for each column is written in column data structures 

that preserve the same row order as every other column so that 

It is not surprising that the Business Analytics market continues to grow 
rapidly and invite new innovations to feed companies’ aggressive 
appetites for more data more quickly. IDC’s latest research revealed that this 
market segment outpaced previous estimates to grow more than 14% from 
2006 to 2007. 
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There are many reasons for the phenomenon, but it is fair to 

summarize that the business game is changing. Businesses 

increasingly rely on analytics to support their decision-making. 

As more companies compete by using business analytics, the 

more business analytics become a necessity for all companies 

to compete. The problem is that analytic processing has tradi-

tionally been resource intensive and achieving adequate 

performance has been cumbersome in the long term. One thing 

is constant: as IT organizations seek new ways to improve 

analytic performance new vendors emerge to provide them. 

A New Breed
The new generation of analytic DBMS providers is combining 

new innovations with well-known performance principles to make 

claims of very high performance out of the box. These claims 

resonate as companies seek greater analytic efficiency. There are 

a number of common threads among these new vendors, but the 
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Afbeelding 1: Data Stored by Row vs. Column.
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line by reducing the CPU cycles necessary to oversee I/O and 

Interconnect processing. The CPU is now more available for 

CPU-intensive work such as calculations, sorts, aggregations, 

etc. In short, by minimizing earlier the set of data to be processed 

there is less processing to do. In other words, the CPU doesn’t 

need to prune what has already been pruned. 

The column data structures are comparable to single column 

indexes in row-wise data bases but without the data duplication 

and associated overhead. Therefore, since each column acts as 

an index, fewer indexes and other auxiliary tuning structures 

(indices, data redundancy, summaries, join indices) are typically 

required for a given performance level. According to Forrester 

Research, in analytic environments data can inflate as much as 

16-fold over it raw size due to various forms of data redundancy.2 

Being conservative with Forrester’s estimate, consider that a 2TB 

data warehouse may actually only contain 500GB of raw user 

data (4:1). With a conservative 4:1 compression ratio, that 2TB 

becomes 250GB and can easily fit in memory on a moderately-

sized MPP cluster (more on MPP below). Applying this inflated 

data concept, if a DBMS can significantly reduce the size of data 

by avoiding data inflation, it can potentially enable in-memory 

processing for even greater speed. 

Finally, it is possible that by increasing performance without 

increasing the effort to achieve that level of performance a 

columnar DBMS may potentially enable ad hoc query by 

reducing the fear of performance degradation from unanticipated 

queries. 

To summarize why columnar is inherently good for analytic 

processing, it: 

-  minimizes I/O;

-  conserves space due to compression affinity;

-  minimizes the size of intermediate results without the expense 

of pruning;

-  reduces dependency on performance-related indices and data 

redundancy;

-  conserves memory, CPU and interconnect bandwidth.

a whole record can be easily assembled from the column data 

structures: the first record’s data is in position one, the second 

record’s data is in position two, etc. (See Figure 1).

Storing data in a columnar way reduces I/O processing for 

analytic queries because they typically only need to analyze a 

subset of the fields available. To understand the potential 

significance of the I/O savings, consider a simple query to 

identify the average Age by Country in the E.U. For simplicity, 

let’s assume there are approximately 400 million people and for 

each person we have collected demographic data consisting of 

100 fields averaging 10 bytes each. This translates to 1,000 bytes 

per person and a total data volume of 400GB. To answer the 

query, a columnar DBMS scans only data blocks associated with 

“Age” and “Country” or 2% of the data (2 fields out of 100) 

which is 8GB. In contrast, a row-wise DBMS without an index 

would need to scan all of the data blocks to grab the Age and 

Country values from each row. (See Figure 2). That’s a difference 

of 50X. 

To be accurate, columnar orientation is not new – research about 

performance improvements using vertically partitioned database 

tables can be found as early as the 1970s (and perhaps earlier). 

However, combining columnar techniques with shared-nothing 

massively parallel processing is a relatively recent market 

development.1

Columnar and Compression
Data compression has a significant affect on resource efficiency 

across the board. After compressing there are fewer bytes to 

scan, fewer bytes to move, and fewer bytes to process. 

Compression is not unique to a columnar DBMS but, due to its 

nature, a columnar DBMS has a greater opportunity to take 

advantage of data compression because columns are domain-

specific. That is, data that belongs to the same field shares the 

same domain type (int, char, varchar, etc.) which can optimize 

the selection of compression method. With this affinity of domain 

type, a columnar DBMS can gain greater efficiency in compres-

sing and decompressing by applying it at the block level rather 

than at the individual field level. Common compression 

techniques like LZ, RLE, and Delta are simpler to implement and 

typically provide greater benefit when applied at block level 

versus row level. Plus, applying compression to sorted data can 

further amplify compression benefits. The columnar domain 

affinity is an enabler here, too. Furthermore, a greatly compres-

sed data set may be more likely to fit in memory for additional 

performance gains (more on this in the next section).

Strengths and Weaknesses
We’ve already observed that a columnar DBMS saves greatly on 

I/O, the largest bottleneck in analytic processing, but these 

I/O savings have deeper implications. Greatly reducing I/O also 

reduces the size of intermediate result sets and the amount of 

data to be moved. This has positive and lasting affects down the 

Row-wise DBMS Columnar DBMS
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age country

Read only columns
to get values

age country

Afbeelding 2: Age by Country Example.
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A further area of misconception is that columnar databases are 

only useful for dimensional (star schema) applications. This is a 

vendor-specific issue relating to the fact that some implemen-

tations rely heavily on join indexing and not to the nature of 

their being columnar. Vendor-specific reliance on Star Schema 

may also negatively impact load performance which may further 

explain the misconception of poor load performance.

A final misconception to note is the belief that a vertically 

partitioned row-wise DBMS is equivalent to a columnar 

DBMS. But to vertically partition, a row-wise DBMS must add 

row overhead for each partition. This overhead becomes 

significant when a query spans multiple vertical partitions and 

must involve a join. To overcome the join penalty, vertical 

partitions can be grouped into sets but this adds further 

overhead and places a burden on the designer to decide in 

advance which groupings to define. This overhead also impacts 

load performance.

Shared-Nothing, Massively Parallel Processing 
(MPP)
MPP has been around since the late 1970s and is a proven tech-

nique for improving analytic performance. What is new is that it’s 

now being applied to the columnar DBMS. MPP is a divide-and-

conquer approach that greatly enhances performance and 

scalability for large data volumes. The concept of parallelism is 

very simple, by splitting up data across many nodes (servers) that 

are each responsible for their own data and processing, but who 

work together, you can process more data in a given time win-

dow. Each node in an MPP system is a self-contained DBMS 

instance. 

MPP is a key enabler for scaling out to potentially thousands of 

standard servers to increase analytic capacity and performance. 

The keys to a good MPP implementation are efficient individual 

compute resources (nodes), even distribution of the workload 

(because a parallel system is only as fast as its slowest unit of 

parallelism) and an efficient interconnect. (See Figure 3.)

Based on concepts discussed thus far, a columnar, compressed 

DBMS (from here on I’ll just say columnar to be brief since they 

most often occur together) can add further value in an MPP 

implementation. As stated above, a columnar DBMS tremen-

dously reduces the data size to make I/O and CPU processing 

more efficient within the node. However, these benefits also 

apply during data movement between nodes. Greater efficiency 

within the node combined with greater efficiency across the 

nodes is a powerful combination to deliver consistently good 

analytic performance.3

MPP also provides performance gains during data loading by 

enabling parallel load. Parallel loading of bulk data (including 

mini batches) is an important part of overall analytic processing 

efficiency especially as data volumes grow, load windows shrink, 

and applications evolve toward near-real-time. It is important to 

be able to scale the load with the overall size of the data and 

platform. 

It is important to note that the very thing that makes a columnar 

DBMS more efficient for analytic processing makes it less 

efficient for transaction processing or applications that require 

highly concurrent row-at-a time operations (e.g. you wouldn’t 

choose a columnar DBMS for an airline reservation system). 

Misconceptions
One common misconception is that a columnar DBMS is an 

“alternate DBMS” or is not relational. However, the columnar 

orientation occurs at the storage layer – the logical database 

design is relational and the underlying mapping between logical 

and physical representation is managed by the DBMS. We’ll 

discuss DBA and design implications later, but realize that a 

columnar DBMS is a relational DBMS that contains tuples and 

speaks SQL.

Another misconception is that a columnar DBMS is slower than a 

row-wise DBMS for an all-record, full table scan that touches all 

columns. The rate of I/O at the HDA (head disk assembly) is a 

function of storage technology, not the DBMS, and would be 

exactly the same for each type of DBMS – the same number of 

bytes will take the same amount of time to read off of disk. 

For example, in a full table select (Select * from table X), the 

performance of a columnar DBMS would be no less than that of a 

row-wise DBMS. 

Yet another misconception is that a columnar DBMS has poor 

load speed. Because a columnar DBMS must parse the data into 

columns, it is thought that loading data must take longer. If 

you’re loading a full table, a columnar DBMS requires the same 

number of I/Os as row-wise DBMS – it’s the same amount of 

data. Column stores are less efficient with row-at-a-time inserts, 

but batch loading (even very frequent batches) has no negative 

performance characteristics and should be utilized whenever 

possible. Also, since a columnar DBMS tends to compress well, if 

I/O is the bottleneck then a given batch of data will load faster 

into a column store than a row store. 
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Afbeelding 3: Keys to a Good MPP Implementation.
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need for traditional access improvement structures, such as 

indices and materialized views, that are intended to avoid the 

data access bottlenecks that arise when using row-wise storage 

for analytic processing. With columnar there should be fewer 

tuning structures to create and manage. Secondary indices that 

were formerly placed on fields in a row-wise DBMS are no longer 

necessary because the columnar database naturally retrieves 

data by field – without indices. 

Figure 4 provides a high level walk through of the data load and 

query processes in a columnar, MPP DBMS. As you can see, the 

columnar orientation and parallelism are built in. 

Why Now?
It took many years, but conventional wisdom finally dictates that 

it is proper and efficient to use an analytic DBMS for analytic 

processing. And, as expected, the resulting increase in demand 

for such tools has fueled a new generation of innovation to bring 

forth a new breed of analytic DBMS designed for today’s analytic 

computing environments. Hence, there are a number of new 

DBMSs that combine the proven concepts of columnar and MPP 

with a healthy dose of new ideas. 

From the prior discussion, it’s evident that this new breed of 

analytic DBMS has been fundamentally re-designed from the 

ground up to take best advantage of system resources in order to 

provide greater analytic efficiency than ever before. Byte-for-byte 

of raw data, a columnar, compressed, massively parallel DBMS 

should yield better analytic performance on a given number of 

CPUs than it’s row-wise cousin. Per Philip Howard of Bloor 

Research, “Columns provide better performance at a lower cost 

with a smaller footprint: it is difficult to understand why any 

company seriously interested in query performance would not 

consider a column-based solution.”4

For those of you whose companies compete by using business 

analytics, the game just changed in your favor.
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What DBAs and Designers Need to Know
As someone who deals with the implementation environment, 

you’ll be pleased to know that working with a modern columnar, 

MPP DBMS is just like other working with any other relational 

DBMS. As mentioned earlier, the columnar storage orientation is 

managed by the DBMS – as data are loaded into the database, 

records are automatically converted to a field orientation and 

affiliated with the appropriate items in the data dictionary. You 

don’t do anything special to facilitate this.

As a standard relational DBMS, a columnar, MPP DBMS 

understands SQL syntax. You will use SQL Data Manipulation 

Language to query data and SQL Data Definition Language 

syntax to define tables, views, macros – and indexes – if you 

choose to use them. 

It’s appropriate to point out that while you shouldn’t automati-

cally assume you need the types of indices you’ve become 

accustomed to when using other types of DBMS in analytic 

environments, they are available to you (though you will incur a 

load performance as with all indices). This same comment applies 

to physical schema design. With a columnar, MPP DBMS you 

should experience higher levels of performance without cluttered 

schemas – e.g., schemas with a lot of pre-defined structures to 

manage that enhance performance but do not enhance the user 

experience. Columnar orientation, by design, should reduce the 
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1. Load batch of records (in parallel)
2. Hash data to nodes (in parallel)
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Load and query are initiated by admin or user. Other activities are 
automatic including applying parallelism to all parallelizable operations

Parallel processing automatically applied

Afbeelding 4: Data Load and Query Processes.


