
Database Magazine – Nummer 8 – december 200826

Thema Trends

one that is getting the most attention is that they use a column-

based approach. (Note: there are a number of terms used to

denote this concept: column-wise, column-oriented, columnvecto-

red, column store, columnar). In addition to being columnar, these

vendors also emphasize deep compression, shared-nothing

massively parallel processing, and, to some extent, a penchant for

processing in-memory whenever possible. This article will

describe these basic architectural principles, and why they matter,

in a vendor-neutral way. Individual vendors will naturally boast

innovations and specializations, but those nuances will be left to

the reader to explore on a vendor-by-vendor basis.

What is Columnar?
I/O tends to be the largest resource bottleneck in processing

analytic workloads on today’s platforms. Therefore, I/O

optimizations can pay off in big ways. In a row-wise DBMS, I/O

is saved by using auxiliary structures like secondary indices, join

indices and summary tables. The problem is that these structures

need to be designed and managed, they take up space, and

they impact load performance. Plus, it’s not feasible to index

everything, so valuable ad hoc discovery-type queries will likely

be discouraged in such an environment.

By contrast, a columnar DBMS saves I/O by optimizing the data

organization within the storage layer to be more favorable for

analytic queries. There is a one dimensional nature to how disk

heads write to sectors. Whereas a row-wise DBMS writes its

records by row in field order, a columnar DBMS writes its

records by field in row order. This technique is a foundational

element in enabling good performance because the nature of

business analytics is to discern facts not from a single record, but

across sets of data – sometimes very large sets. Specifically, the

data for each column is written in column data structures

that preserve the same row order as every other column so that

It is not surprising that the Business Analytics market continues to grow
rapidly and invite new innovations to feed companies’ aggressive
appetites for more data more quickly. IDC’s latest research revealed that this
market segment outpaced previous estimates to grow more than 14% from
2006 to 2007.

 New breed has been fundamentally re-designed

Inside the New-Generation
Analytic DBMS
 Kim Stanick

There are many reasons for the phenomenon, but it is fair to

summarize that the business game is changing. Businesses

increasingly rely on analytics to support their decision-making.

As more companies compete by using business analytics, the

more business analytics become a necessity for all companies

to compete. The problem is that analytic processing has tradi-

tionally been resource intensive and achieving adequate

performance has been cumbersome in the long term. One thing

is constant: as IT organizations seek new ways to improve

analytic performance new vendors emerge to provide them.

A New Breed
The new generation of analytic DBMS providers is combining

new innovations with well-known performance principles to make

claims of very high performance out of the box. These claims

resonate as companies seek greater analytic efficiency. There are

a number of common threads among these new vendors, but the

Storage by Row

Structure
For Row 1 Row 1 Col A Row 1 Col B Row 1 Col C

Structure
For Row 2 Row 2 Col A Row 2 Col B Row 2 Col C

Structure
For Row 3 Row 3 Col A Row 3 Col B Row 3 Col C

Storage by Column

Structure
For Column1 Row 1 Col A Row 2 Col A Row 3 Col A

Structure
For Column 2 Row 1 Col B Row 2 Col B Row 3 Col B

Structure
For Column 3 Row 1 Col C Row 2 Col C Row 3 Col C

Afbeelding 1: Data Stored by Row vs. Column.

Database Magazine – Nummer 8 – december 2008 27

line by reducing the CPU cycles necessary to oversee I/O and

Interconnect processing. The CPU is now more available for

CPU-intensive work such as calculations, sorts, aggregations,

etc. In short, by minimizing earlier the set of data to be processed

there is less processing to do. In other words, the CPU doesn’t

need to prune what has already been pruned.

The column data structures are comparable to single column

indexes in row-wise data bases but without the data duplication

and associated overhead. Therefore, since each column acts as

an index, fewer indexes and other auxiliary tuning structures

(indices, data redundancy, summaries, join indices) are typically

required for a given performance level. According to Forrester

Research, in analytic environments data can inflate as much as

16-fold over it raw size due to various forms of data redundancy.2

Being conservative with Forrester’s estimate, consider that a 2TB

data warehouse may actually only contain 500GB of raw user

data (4:1). With a conservative 4:1 compression ratio, that 2TB

becomes 250GB and can easily fit in memory on a moderately-

sized MPP cluster (more on MPP below). Applying this inflated

data concept, if a DBMS can significantly reduce the size of data

by avoiding data inflation, it can potentially enable in-memory

processing for even greater speed.

Finally, it is possible that by increasing performance without

increasing the effort to achieve that level of performance a

columnar DBMS may potentially enable ad hoc query by

reducing the fear of performance degradation from unanticipated

queries.

To summarize why columnar is inherently good for analytic

processing, it:

- minimizes I/O;

- conserves space due to compression affinity;

- minimizes the size of intermediate results without the expense

of pruning;

- reduces dependency on performance-related indices and data

redundancy;

- conserves memory, CPU and interconnect bandwidth.

a whole record can be easily assembled from the column data

structures: the first record’s data is in position one, the second

record’s data is in position two, etc. (See Figure 1).

Storing data in a columnar way reduces I/O processing for

analytic queries because they typically only need to analyze a

subset of the fields available. To understand the potential

significance of the I/O savings, consider a simple query to

identify the average Age by Country in the E.U. For simplicity,

let’s assume there are approximately 400 million people and for

each person we have collected demographic data consisting of

100 fields averaging 10 bytes each. This translates to 1,000 bytes

per person and a total data volume of 400GB. To answer the

query, a columnar DBMS scans only data blocks associated with

“Age” and “Country” or 2% of the data (2 fields out of 100)

which is 8GB. In contrast, a row-wise DBMS without an index

would need to scan all of the data blocks to grab the Age and

Country values from each row. (See Figure 2). That’s a difference

of 50X.

To be accurate, columnar orientation is not new – research about

performance improvements using vertically partitioned database

tables can be found as early as the 1970s (and perhaps earlier).

However, combining columnar techniques with shared-nothing

massively parallel processing is a relatively recent market

development.1

Columnar and Compression
Data compression has a significant affect on resource efficiency

across the board. After compressing there are fewer bytes to

scan, fewer bytes to move, and fewer bytes to process.

Compression is not unique to a columnar DBMS but, due to its

nature, a columnar DBMS has a greater opportunity to take

advantage of data compression because columns are domain-

specific. That is, data that belongs to the same field shares the

same domain type (int, char, varchar, etc.) which can optimize

the selection of compression method. With this affinity of domain

type, a columnar DBMS can gain greater efficiency in compres-

sing and decompressing by applying it at the block level rather

than at the individual field level. Common compression

techniques like LZ, RLE, and Delta are simpler to implement and

typically provide greater benefit when applied at block level

versus row level. Plus, applying compression to sorted data can

further amplify compression benefits. The columnar domain

affinity is an enabler here, too. Furthermore, a greatly compres-

sed data set may be more likely to fit in memory for additional

performance gains (more on this in the next section).

Strengths and Weaknesses
We’ve already observed that a columnar DBMS saves greatly on

I/O, the largest bottleneck in analytic processing, but these

I/O savings have deeper implications. Greatly reducing I/O also

reduces the size of intermediate result sets and the amount of

data to be moved. This has positive and lasting affects down the

Row-wise DBMS Columnar DBMS

Read all rows, all
columns to get values

age country

Read only columns
to get values

age country

Afbeelding 2: Age by Country Example.

Database Magazine – Nummer 8 – december 200828

A further area of misconception is that columnar databases are

only useful for dimensional (star schema) applications. This is a

vendor-specific issue relating to the fact that some implemen-

tations rely heavily on join indexing and not to the nature of

their being columnar. Vendor-specific reliance on Star Schema

may also negatively impact load performance which may further

explain the misconception of poor load performance.

A final misconception to note is the belief that a vertically

partitioned row-wise DBMS is equivalent to a columnar

DBMS. But to vertically partition, a row-wise DBMS must add

row overhead for each partition. This overhead becomes

significant when a query spans multiple vertical partitions and

must involve a join. To overcome the join penalty, vertical

partitions can be grouped into sets but this adds further

overhead and places a burden on the designer to decide in

advance which groupings to define. This overhead also impacts

load performance.

Shared-Nothing, Massively Parallel Processing
(MPP)
MPP has been around since the late 1970s and is a proven tech-

nique for improving analytic performance. What is new is that it’s

now being applied to the columnar DBMS. MPP is a divide-and-

conquer approach that greatly enhances performance and

scalability for large data volumes. The concept of parallelism is

very simple, by splitting up data across many nodes (servers) that

are each responsible for their own data and processing, but who

work together, you can process more data in a given time win-

dow. Each node in an MPP system is a self-contained DBMS

instance.

MPP is a key enabler for scaling out to potentially thousands of

standard servers to increase analytic capacity and performance.

The keys to a good MPP implementation are efficient individual

compute resources (nodes), even distribution of the workload

(because a parallel system is only as fast as its slowest unit of

parallelism) and an efficient interconnect. (See Figure 3.)

Based on concepts discussed thus far, a columnar, compressed

DBMS (from here on I’ll just say columnar to be brief since they

most often occur together) can add further value in an MPP

implementation. As stated above, a columnar DBMS tremen-

dously reduces the data size to make I/O and CPU processing

more efficient within the node. However, these benefits also

apply during data movement between nodes. Greater efficiency

within the node combined with greater efficiency across the

nodes is a powerful combination to deliver consistently good

analytic performance.3

MPP also provides performance gains during data loading by

enabling parallel load. Parallel loading of bulk data (including

mini batches) is an important part of overall analytic processing

efficiency especially as data volumes grow, load windows shrink,

and applications evolve toward near-real-time. It is important to

be able to scale the load with the overall size of the data and

platform.

It is important to note that the very thing that makes a columnar

DBMS more efficient for analytic processing makes it less

efficient for transaction processing or applications that require

highly concurrent row-at-a time operations (e.g. you wouldn’t

choose a columnar DBMS for an airline reservation system).

Misconceptions
One common misconception is that a columnar DBMS is an

“alternate DBMS” or is not relational. However, the columnar

orientation occurs at the storage layer – the logical database

design is relational and the underlying mapping between logical

and physical representation is managed by the DBMS. We’ll

discuss DBA and design implications later, but realize that a

columnar DBMS is a relational DBMS that contains tuples and

speaks SQL.

Another misconception is that a columnar DBMS is slower than a

row-wise DBMS for an all-record, full table scan that touches all

columns. The rate of I/O at the HDA (head disk assembly) is a

function of storage technology, not the DBMS, and would be

exactly the same for each type of DBMS – the same number of

bytes will take the same amount of time to read off of disk.

For example, in a full table select (Select * from table X), the

performance of a columnar DBMS would be no less than that of a

row-wise DBMS.

Yet another misconception is that a columnar DBMS has poor

load speed. Because a columnar DBMS must parse the data into

columns, it is thought that loading data must take longer. If

you’re loading a full table, a columnar DBMS requires the same

number of I/Os as row-wise DBMS – it’s the same amount of

data. Column stores are less efficient with row-at-a-time inserts,

but batch loading (even very frequent batches) has no negative

performance characteristics and should be utilized whenever

possible. Also, since a columnar DBMS tends to compress well, if

I/O is the bottleneck then a given batch of data will load faster

into a column store than a row store.

Thema Trends

Efficient Interconnect

Efficiency across nodes

Server

Server

Server

Server

Server

Server

Server

Efficient Nodes

Afbeelding 3: Keys to a Good MPP Implementation.

Database Magazine – Nummer 8 – december 2008 29

need for traditional access improvement structures, such as

indices and materialized views, that are intended to avoid the

data access bottlenecks that arise when using row-wise storage

for analytic processing. With columnar there should be fewer

tuning structures to create and manage. Secondary indices that

were formerly placed on fields in a row-wise DBMS are no longer

necessary because the columnar database naturally retrieves

data by field – without indices.

Figure 4 provides a high level walk through of the data load and

query processes in a columnar, MPP DBMS. As you can see, the

columnar orientation and parallelism are built in.

Why Now?
It took many years, but conventional wisdom finally dictates that

it is proper and efficient to use an analytic DBMS for analytic

processing. And, as expected, the resulting increase in demand

for such tools has fueled a new generation of innovation to bring

forth a new breed of analytic DBMS designed for today’s analytic

computing environments. Hence, there are a number of new

DBMSs that combine the proven concepts of columnar and MPP

with a healthy dose of new ideas.

From the prior discussion, it’s evident that this new breed of

analytic DBMS has been fundamentally re-designed from the

ground up to take best advantage of system resources in order to

provide greater analytic efficiency than ever before. Byte-for-byte

of raw data, a columnar, compressed, massively parallel DBMS

should yield better analytic performance on a given number of

CPUs than it’s row-wise cousin. Per Philip Howard of Bloor

Research, “Columns provide better performance at a lower cost

with a smaller footprint: it is difficult to understand why any

company seriously interested in query performance would not

consider a column-based solution.”4

For those of you whose companies compete by using business

analytics, the game just changed in your favor.

References
1. Interestingly, although the columnar concept has been around for

decades, it is still new to some people: a 2008 IDC study of BIDW

professionals showed that 25% of survey respondents weren’t aware

of columnar DBMSs.

2. Data, Data Everywhere. Boris Evelson, Forrester Research 2007.

3. By contrast, Symmetric Multi Processing (SMP) is the most common

alternative to MPP. In an SMP environment, a system is scaled by

adding CPUs (and memory and disk) to a shared memory environment.

The system manages the utilization of resources across all CPUs.

At some point there is overhead to managing the CPUs and contention

for shared resources to the point where adding another CPU may not

deliver a whole CPU’s power. SMP systems are scalable only up to a

relatively finite number of CPUs (e.g., 128).

4. What’s Cool About Columns. Philip Howard, Bloor 2008.

Kim Stanick is VP Marketing, ParAccel, Inc.

The author would like to thank her colleague Rick Glick for his

contributions to this article.

What DBAs and Designers Need to Know
As someone who deals with the implementation environment,

you’ll be pleased to know that working with a modern columnar,

MPP DBMS is just like other working with any other relational

DBMS. As mentioned earlier, the columnar storage orientation is

managed by the DBMS – as data are loaded into the database,

records are automatically converted to a field orientation and

affiliated with the appropriate items in the data dictionary. You

don’t do anything special to facilitate this.

As a standard relational DBMS, a columnar, MPP DBMS

understands SQL syntax. You will use SQL Data Manipulation

Language to query data and SQL Data Definition Language

syntax to define tables, views, macros – and indexes – if you

choose to use them.

It’s appropriate to point out that while you shouldn’t automati-

cally assume you need the types of indices you’ve become

accustomed to when using other types of DBMS in analytic

environments, they are available to you (though you will incur a

load performance as with all indices). This same comment applies

to physical schema design. With a columnar, MPP DBMS you

should experience higher levels of performance without cluttered

schemas – e.g., schemas with a lot of pre-defined structures to

manage that enhance performance but do not enhance the user

experience. Columnar orientation, by design, should reduce the

Load Hash

Load Data

Parse Sort Compress Write

1. Load batch of records (in parallel)
2. Hash data to nodes (in parallel)
3. Parse into columns (in parallel)
4. Sort into record order (in parallel)
5. Compress data (in parallel)
6. Write to data blocks (in parallel)

Plan

Query Data:
“Average Age
by Country”

Scan
Calcs,
etc. Results

1. Parse/Plan query
2. Scan Age, Country (in parallel)
3. Perform calculations and data
 operations (in parallel)
4. Return result set

Load and query are initiated by admin or user. Other activities are
automatic including applying parallelism to all parallelizable operations

Parallel processing automatically applied

Afbeelding 4: Data Load and Query Processes.

