”
Traditional machine learning solutions fail at extracting value for most organizations. Here's how you can use - and profit from - all your data effectively.
Machine Learning and AI have been generating a tremendous amount of hype for years now - it was 2011 when IBM Watson famously won Jeopardy - but most organizations have not benefited significantly from analytics yet. All the ingredients are in place, with incredible amounts of data being collected, more compute power available than ever and continually improving algorithms… yet gains remain limited.
The problem is that scarce data scientist resources can’t keep up with the number of complex and time-consuming tasks required to build and fine-tune analytical models. When new data is available, additional data scientist work is often required to update the models. With so much data available and everybody wanting to make the most of it, a lack of data science resources is the primary obstacle preventing organizations from successfully realizing a major benefit.
To solve this problem, Progress has set out to automate the hardest and most time-consuming aspects of the data science lifecycle. By enabling easier and more efficient analysis of data through automation, we turn the problem on its head—the more data you have the easier it is to analyze accurately, not harder.
Traditional Methods Leave Massive Potential Untapped
One area that analysts agree is primed to deliver benefits from newly available data is in the IIoT. Manufacturing, Oil and Gas, Automotive and many other industries are equipping more and more machines with sensors, and the successful leveraging of this data is estimated to provide billions of dollars of impact. But traditional approaches have not achieved this—not even close. The problem is the manual approach required by typical solutions.
To provide accurate results, these solutions require models to be built and maintained - manually - for every individual asset, increasing the cost and complexity of managing each model as well as the data that comes from every individual asset. The problem continues beyond the initial model and deployment stage too, because the models must be continually updated to adjust to dynamic environments. Throwing data scientists at this challenge is not a viable approach for most organizations.
Cognitive Anomaly Detection and Prediction for All
Our approach at Progress is different. We made it out goal to create a solution that is automated, massively scalable and self-learning. We use unsupervised learning to automatically label data, and take into account individual asset behavior, operating patterns and environmental conditions for every asset. Using automation and a digital twin approach, we create a model for each asset, and refresh these models in real-time so that they remain accurate even when situations change rapidly.
With Cognitive Anomaly Detection and Prediction (CADP), organizations can get early warnings about likely breakdowns and act accordingly. Repeated failure conditions are identified, but CADP also reveals the “unknown unknowns” by uncovering anomalies not previously discovered. This approach reduces downtime, improves performance and increases operational efficiency, all while reducing the burden on your data science and IT resources.
Unlike other solutions, CADP is automated, self-improving thanks to our patented Meta-Learning technology, and built on an open architecture. Perhaps best of all, it can deliver results in just days, rather than months.
2 april 2025 Schrijf in voor al weer de twaalfde editie van ons jaarlijkse congres met wederom een ijzersterke sprekers line-up. Op deze editie behandelen wij belangrijke thema’s als Moderne Cloud Data Architecturen, Datawarehouse Design met Ge...
3 april 2025 (halve dag)Praktische workshop met Alec Sharp [Halve dag] Deze workshop door Alec Sharp introduceert conceptmodellering vanuit een non-technisch perspectief. Alec geeft tips en richtlijnen voor de analist, en verkent datamodellering op c...
7 t/m 9 april 2025Praktische workshop met internationaal gerenommeerde spreker Alec Sharp over het modelleren met Entity-Relationship vanuit business perspectief. De workshop wordt ondersteund met praktijkvoorbeelden en duidelijke, herbruikbare richt...
10, 11 en 14 april 2025Praktische driedaagse workshop met internationaal gerenommeerde spreker Alec Sharp over herkennen, beschrijven en ontwerpen van business processen. De workshop wordt ondersteund met praktijkvoorbeelden en duidelijke, herbruikba...
20 en 21 mei 2025 Deze workshop behandelt de implementatie van Knowledge Graphs en Large Language Models binnen organisaties en biedt een uitgebreid raamwerk waarin geavanceerde technieken worden gecombineerd met praktijkcases en oefeningen. Het vo...
22 mei 2025 Workshop met BPM-specialist Christian Gijsels over AI-Gedreven Business Analyse met ChatGPT. Kunstmatige Intelligentie, ongetwijfeld een van de meest baanbrekende technologieën tot nu toe, opent nieuwe deuren voor analisten met innovatie...
2 t/m 4 juni 2025 De DAMA DMBoK2 beschrijft 11 disciplines van Data Management, waarbij Data Governance centraal staat. De Certified Data Management Professional (CDMP) certificatie biedt een traject voor het inleidende niveau (Associate) tot en me...
Alleen als In-house beschikbaarWorkshop met BPM-specialist Christian Gijsels over business analyse, modelleren en simuleren met de nieuwste release van Sparx Systems' Enterprise Architect, versie 16.Intensieve cursus waarin de belangrijkste basisfunc...
Deel dit bericht